Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell (2024)

References

  1. Xu, K. Interfaces and interphases in batteries. J. Power Sources 559, 232652 (2023).

    Article Google Scholar

  2. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article Google Scholar

  3. Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article Google Scholar

  4. Li, Q., Yu, X. Q. & Li, H. Batteries: from China’s 13th to 14th five-year plan. eTransportation 14, 100201 (2022).

    Article Google Scholar

  5. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article Google Scholar

  6. Jiao, S. H. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article Google Scholar

  7. Yao, Y. X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021).

    Article Google Scholar

  8. Li, T. et al. Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 60, 22683–22687 (2021).

    Article Google Scholar

  9. Chen, X., Zhang, X. Q., Li, H. R. & Zhang, Q. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries. Batteries Supercaps 2, 128–131 (2019).

    Article Google Scholar

  10. Wu, Z. et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9, 650–664 (2023).

    Article Google Scholar

  11. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article Google Scholar

  12. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article Google Scholar

  13. Fan, X. L. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article Google Scholar

  14. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article Google Scholar

  15. Xue, W. J. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article Google Scholar

  16. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article Google Scholar

  17. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article Google Scholar

  18. Li, X. et al. Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries. Carbon Neutrality 2, 34 (2023).

    Article Google Scholar

  19. Kim, S. C. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023).

    Article Google Scholar

  20. Wang, Q. et al. High entropy liquid electrolytes for lithium batteries. Nat. Commun. 14, 440 (2023).

    Article Google Scholar

  21. Wang, Q. et al. Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 35, e2210677 (2023).

    Article Google Scholar

  22. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article Google Scholar

  23. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article Google Scholar

  24. Onsager, L. Deviations from Ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934).

    Article Google Scholar

  25. Zhu, Z. et al. In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15, 6170–6176 (2015).

    Article Google Scholar

  26. Piechota, E. J. Deconvoluting double layers. Nat. Chem. 13, 827 (2021).

    Article Google Scholar

  27. Zhou, Y. et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15, 224–230 (2020).

    Article Google Scholar

  28. Zhang, W. et al. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022).

    Article Google Scholar

  29. Kavarnos, G. J. & Turro, N. J. Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem. Rev. 86, 401–449 (1986).

    Article Google Scholar

  30. Looyenga, H. Dielectric constants of heterogeneous mixtures. Physica 31, 401–406 (1965).

    Article Google Scholar

  31. Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article Google Scholar

  32. Costa Reis, M. Ion activity models: the Debye-Hückel equation and its extensions. ChemTexts 7, 9 (2021).

    Article Google Scholar

  33. Lu, Y., Zhao, C. Z., Huang, J. Q. & Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022).

    Article Google Scholar

  34. Kovalenko, A. & Hirata, F. Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chem. Phys. Lett. 290, 237–244 (1998).

    Article Google Scholar

  35. Sato, H., Kovalenko, A. & Hirata, F. Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution. J. Chem. Phys. 112, 9463–9468 (2000).

    Article Google Scholar

  36. Wang, X. et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).

    Article Google Scholar

  37. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article Google Scholar

  38. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article Google Scholar

  39. Lohrberg O. et al. Benchmarking and critical design considerations of zero‐excess Li-metal batteries. Adv. Funct. Mater. 33, (2023).

  40. Adams, B. D., Zheng, J. M., Ren, X. D., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article Google Scholar

  41. Cheng, L. et al. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015).

    Article Google Scholar

  42. Shimizu, K., Almantariotis, D., Costa Gomes, M. F., Padua, A. A. & Canongia Lopes, J. N. Molecular force field for ionic liquids V: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114, 3592–3600 (2010).

    Article Google Scholar

  43. Sambasivarao, S. V. & Acevedo, O. Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 5, 1038–1050 (2009).

    Article Google Scholar

  44. Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).

    Article Google Scholar

  45. Zhang, Q. K. et al. hom*ogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article Google Scholar

  46. Zhao, Q. et al. Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61, e202116214 (2022).

    Article Google Scholar

  47. Niu, C. J. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article Google Scholar

  48. Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021).

    Article Google Scholar

  49. Gao, Y. et al. Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries. Nat. Commun. 13, 5 (2022).

    Article Google Scholar

  50. Niu, C. J. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article Google Scholar

  51. Zhang, L. H. et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte. Nano Energy 96, 107122 (2022).

    Article Google Scholar

  52. Zhu, C. N. et al. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 7, 1338–1347 (2022).

    Article Google Scholar

  53. Xia, Y. C. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    Article Google Scholar

Download references

Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell (2024)
Top Articles
NBA 2K23: Best builds for MyCareer and MyPlayer — LeBron James and More
Best NBA 2K23 MyPlayer builds: Guards, Forwards & Center - Charlie INTEL
Chris Provost Daughter Addie
Pga Scores Cbs
Jonathon Kinchen Net Worth
Comforting Nectar Bee Swarm
EY – все про компанію - Happy Monday
Mohawkind Docagent
Computer Repair Tryon North Carolina
Flights to Miami (MIA)
4Chan Louisville
10 Free Employee Handbook Templates in Word & ClickUp
Diesel Mechanic Jobs Near Me Hiring
Nissan Rogue Tire Size
Kürtçe Doğum Günü Sözleri
The Grand Canyon main water line has broken dozens of times. Why is it getting a major fix only now?
360 Tabc Answers
Iu Spring Break 2024
All Obituaries | Gateway-Forest Lawn Funeral Home | Lake City FL funeral home and cremation Lake City FL funeral home and cremation
Directions To Cvs Pharmacy
How Taraswrld Leaks Exposed the Dark Side of TikTok Fame
Select Truck Greensboro
Kroger Feed Login
Smartfind Express Login Broward
Catchvideo Chrome Extension
Miles City Montana Craigslist
Craigslist Auburn Al
Motor Mounts
Angel del Villar Net Worth | Wife
Mkvcinemas Movies Free Download
2024 Coachella Predictions
Mega Millions Lottery - Winning Numbers & Results
Sitting Human Silhouette Demonologist
404-459-1280
Lichen - 1.17.0 - Gemsbok! Antler Windchimes! Shoji Screens!
Rocketpult Infinite Fuel
Ticketmaster Lion King Chicago
Tryst Houston Tx
Scarlet Maiden F95Zone
Actor and beloved baritone James Earl Jones dies at 93
Vintage Stock Edmond Ok
Cch Staffnet
Theater X Orange Heights Florida
Adams-Buggs Funeral Services Obituaries
City Of Irving Tx Jail In-Custody List
Tito Jackson, member of beloved pop group the Jackson 5, dies at 70
Google Flights Missoula
Sleep Outfitters Springhurst
Metra Union Pacific West Schedule
Swissport Timecard
How to Choose Where to Study Abroad
Wayward Carbuncle Location
Latest Posts
Article information

Author: Van Hayes

Last Updated:

Views: 6139

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Van Hayes

Birthday: 1994-06-07

Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

Phone: +512425013758

Job: National Farming Director

Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.